FlowVision CFD software is used in various sectors for many different applications. Below is a list of foremost sectors FlowVision is preferred and mostly performed simulation tasks in these areas.

More detailed about all applications you can read in Solutions article.

Below you can find our publications.

The paper presents a numerical simulation of the drop test in a still water for the multi-component box structure. The complexity of the problem is in the strong fluid-structure interaction (FSI) between the box and the water free surface. The numerical simulation of the drop test is performed with two software tools: Abaqus and FlowVision through the direct coupling interface, which manipulates, on the Abaqus side the Lagrangian finite-element mesh and on the FlowVision side the Eulerian finite-volume mesh with subgrid geometry resolution.

Drop Test FSI Simulation with Abaqus and Flo

tags: ,

The brief for the boat, v-39 Albatross is to set a new world outright sailing speed record at Portland Harbor, UK by 2013. The boat is configured to add at least 10 knots to the current record by setting a speed above 65 knots (120 km/h). At speed the boat hulls will fly above the surface using a wing in ground effect. The pilot is able to sail on both port and starboard tack and can actively control the craft in speed, roll and height as well as direction.

Coupled CFD and Structural An

Computational results of 3D turbulent compressible gas flow in a single-nozzle ejector are compared with experimental data. Full Navier-Stokes equations and k- model of turbulence are used for mathematical model of gas flow. In computations the suction gas flow rate was determined and compared with experimental one. Two computational grids – coarse and fine are used to perform simulation.

Computational Stud

tags: ,

At present time RSC Energia is carrying out research work on designing the reentry manned spacecraft of new generation to crew deliver, in-flight support and return. The spacecraft ought to take the place of Soyuz. Manned spacecraft Clipper having the reentry vehicle (RV) of lifting body type is a possible alternate solution (Fig. 1). In comparison with Soyuz suggested RV provides higher maneuverability and less overloading during descent phase.

Aerodynamic of Reentry Spacecraft Clipper

tags: ,

An advanced finite-volume method (method of modified finite volumes) for numerical simulation of flows in industrial applications and its implementation in code FlowVision is proposed. The method is based on non-staggered Cartesian grid with adaptive local refinement and a subgrid geometry resolution method for description of curvilinear complex boundaries. Semi-Lagrange approach for solution of convective transport equation and splitting algorithm for
solution of Navier-Stokes equations are presented.


Lift force formation in a thrust bearing of 800-tons rotor of electric power station is discussed in the given paper. The problem is solved numerically. Direct coupling between finite-element system Abaqus calculating stress and strain state of an bearing parts and finite-volume system FlowVision-HPC calculating oil flow in gap between a collar and a shoe of bearing is used. The shape of the gap between the shoe and the collar, the clearance value, the moment of the friction force, and the temperature distribution of oil over the clearance are determined.


Approach to numerical simulation of water and air flow around aquaplaning car tire is described. The approach for governing equations solving is based on a finite-volume method and non-staggered Cartesian adaptive locally refined grid. A method of subgrid geometry resolution is proposed for accurate
description of curvilinear complex boundaries. This method uses a presentation of boundaries as a set of plane facets and makes CFD code compatible with CAD systems. The described technology is implemented in FlowVision code. Some results of simulation of car tire aquaplaning performed by FlowVision are presented The tire lift dependence on a tread picture is calculated.

numerical sim

The valve stem seal is an important part of any internal combustion engine. The seal supplies a lubrication of valve stem and limits emission of oil. To design reliable and long-life stem seals a numerical simulation of the seal work is used. Numerical simulation helps to understand the main features of the stem seal working cycle and estimate the changing seal characteristics because of seal aging processes. The problem of oil flow via stem seal involves fluid-structure interaction between an oil flow induced by oscillating stem and deformable seal made from rubber. The Fluid-Structure Interaction Problem is solved numerically by using two codes: Abaqus/Explicit to get deformation of rubber seal and CFD code FlowVision to simulate oil flow.


Page 3 of 3