CFD calculations of NREL Phase VI rotor under wide range of operation conditions were conducted using FlowVision software. Computations were performed for various wind speeds with axial inflow, constant RPM and constant blade pitch. The rotation of the blades was modeled via different approaches; steady-state with frozen rotor using rotating reference frame and transient with moving boundaries or sliding surfaces. In addition to this, an ‘Overlapping Boundary Layer (OBL)’ was implemented to resolve the boundary layer for a selected case. Turbulence models ‘k-ε-AKN and k-ω Shear Stress Transport (SST) were used and compared. Except the OBL case, FlowVision wall function approximation was employed for all calculations with y+ values between 30 and 100.

nrel validation

Overall results were compared for all of the above-mentioned numerical approaches and showed good agreement with the experimental data. k-ω SST turbulence model is found to perform better to predict stall onset. The stall occurrence and general torque trend as a function of wind speed is fairly well captured. Comparisons of the static pressure distribution around blades with experimental data at different span-wise sections for different wind speeds are presented and good agreement is observed.

In the present paper the simulation of the explosion of condensed explosives in the air. The method used simulation by specifying the scope of compressed gas as the point source of the explosion. Describes the behavior of the blast wave on the middle and far distances from the source of the explosion, in which a pressure profile does not depend on the geometry of the source. The paper proposed to develop a method scope of the compressed gas provides the account properties of the products of the explosion for any explosive composition. Numerical investigation of the explosion of an explosive charge in the open countryside, in the presence of walls and rigidly fixed in the model of the urban environment. Shown good agreement with the experimental results and the peak pulse pressure both direct and reflected waves in each of the above cases.

flowvision explosions

The paper studies the experience in application of CFD FlowVision software for analytical validation of sodium-cooled fast reactor structure components and the results of performed verification, namely:

  • development and implementation of new model of turbulent heat transfer in liquid sodium (LMS) in FlowVision software and model verification based on thermohydraulic characteristics studied by experiment at TEFLU test facility;
  • simulation of flowing and mixing of coolant with different temperatures in the upper mixing chamber of fast neutron reactor through the example of BN-600 (comparison with the results obtained at the operating reactor).

verification nuclear

Based on the analysis of the results obtained, the efficiency of CFD codes application for the considered problems is shown, and the proposals for CFD codes verification development as applied to the advanced sodium-cooled fast reactor designs are stated.


In this paper, the modeling and simulation of the blood flow in the real patient heart is described. In order to cure the patients with cardio vascular disorder it is important to make appropriate choice of an artificial heart valve, it is important to exactly understand the behavior of the heart blood flow of the specific patient under treatment. The presented approach is based on the Magnetic Resonance Imaging/Tomography, which provides the necessary input to create the heart shape (“its geometry”) and its variation in time (tens or hundreds of frames) to define the internal time-dependent heart volumes for one heartbeat. Once this geometry is defined, the CFD software is applied to simulate the internal blood flow and further on visualize it to enable its further analysis. The applied CFD tool is FlowVision, due to its possibility to fully automatically perform the mesh generation of arbitrary shapes, as the heart geometry requires. In addition, FlowVision applies the dynamic mesh refinement by taking into account the motion of the heart-modeled surface, required by the CFD Euler model. The presented CFD approach to simulate the human internal blood flow is validated with data from MRI/MRT scans of the real heart and the respective simulation test cases are presented.

heart cfd

Cardiovascular disease is the leading cause of death in developed countries and continues to drive significant research aimed at improving diagnosis and treatment. In cases where therapeutic medical device intervention is warranted, it is important to account for device-heart interaction over both the short and long term. In the short term, cardiac motion can significantly impact device stability and performance (as in the case of artificial heart valves), while over the long term, modified blood flow patterns may lead to structural remodeling that can have adverse effects on cardiovascular function. Computational tools used for device design, sizing, and placement must therefore be able to account for cardiac/vascular tissue mechanics, blood flow, and the interaction between them. Moreover, such tools must allow for patient-specific modeling and provide interactive visualization capabilities that can support clinical decision-making and reduce operator error.


Blood flow velocity at different time points in the FSI simulation

In this paper, we describe a methodology for bidirectional fluid-structure interaction between the general purpose CFD code FlowVision and the SIMULIA Living Heart Human Model (LHHM), a dynamic, anatomically realistic, four-chamber heart model that considers the interplay and coupling of electrical and mechanical fields acting in concert to regulate the heart filling, ejection, and overall pump functions. The LHHM natively includes a 1D fluid network model capable of representing dynamic pressure/volume changes in the intra- and extra-cardiac circulation. In the current work, we first replace this network model with a full 3D blood model (solved in FlowVision) that provides detailed spatial and temporal resolution of cardiac hemodynamics driven by motions of the beating heart and constrained with appropriate time-varying boundary conditions derived from the literature. After validating this approach, we activate bidirectional coupling between the blood flow CFD model and the LHHM electromechanical model using the SIMULIA co-simulation engine and discuss modeling details and results of interest.

Hydroplaning is a major cause of wet-road accidents. The main contact element between the ground and vehicle is the tire. Tire safety and performance are therefore critically important. Wet roads present several uncontrollable factors. This paper uses CFD (Computational Fluid Dynamics) to analyze wet road hydroplaning effects. Fluid dynamics cannot be easily measured using normal experiments. Therefore the braking distance and record rolling vary by encoder. We propose another method to analysis it. By this result, the large groove and tire depth can reduce hydroplaning effects. A second method is modifying the tire void pattern which can reduce the hydroplaning extent by 29%.

tire hydroplaning